Sparse Frequency Diverse MIMO Radar Imaging for Off-Grid Target Based on Adaptive Iterative MAP
نویسندگان
چکیده
The frequency diverse multiple-input-multiple-output (FD-MIMO) radar synthesizes a wideband waveform by transmitting and receiving multiple frequency signals simultaneously. For FD-MIMO radar imaging, conventional imaging methods based on Matched Filter (MF) cannot enjoy good imaging performance owing to the few and incomplete wavenumber-domain coverage. Higher resolution and better imaging performance can be obtained by exploiting the sparsity of the target. However, good sparse recovery performance is based on the assumption that the scatterers of the target are positioned at the pre-discretized grid locations; otherwise, the performance would significantly degrade. Here, we propose a novel approach of sparse adaptive calibration recovery via iterative maximum a posteriori (SACR-iMAP) for the general off-grid FD-MIMO radar imaging. SACR-iMAP contains three loop stages: sparse recovery, off-grid errors calibration and parameter update. The convergence and the initialization of the method are also discussed. Numerical simulations are carried out to verify the effectiveness of the proposed method.
منابع مشابه
A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar
Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...
متن کاملSparse ground-penetrating radar imaging method for off-the-grid target problem
Spatial sparsity of the target space in subsurface or through-the-wall imaging applications has been successfully used within the compressive-sensing framework to decrease the data acquisition load in practical systems, while also generating highresolution images. The developed techniques in this area mainly discretize the continuous target space into grid points and generate a dictionary of mo...
متن کاملSIRE : A MIMO radar for landmine / IED detection
In this paper, we present the Synchronous Impulse Reconstruction Radar (SIRE) Ultra-wideband (UWB) radar designed by the Army Research Lab (ARL) for landmine and improvised explosive device (IED) detection as a 2 by 16 MIMO radar (with collocated antennas). Its improvement over its SIMO counterpart in terms of beampattern/cross range resolution are discussed and demonstrated using simulated dat...
متن کاملSIRE : A MIMO radar for landmine / IED detection Report
In this paper, we present the Synchronous Impulse Reconstruction Radar (SIRE) Ultra-wideband (UWB) radar designed by the Army Research Lab (ARL) for landmine and improvised explosive device (IED) detection as a 2 by 16 MIMO radar (with collocated antennas). Its improvement over its SIMO counterpart in terms of beampattern/cross range resolution are discussed and demonstrated using simulated dat...
متن کاملSimultaneous Sparse Approximation Using an Iterative Method with Adaptive Thresholding
This paper studies the problem of Simultaneous Sparse Approximation (SSA). This problem arises in many applications which work with multiple signals maintaining some degree of dependency such as radar and sensor networks. In this paper, we introduce a new method towards joint recovery of several independent sparse signals with the same support. We provide an analytical discussion on the converg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013